1,022 research outputs found

    Fault-tolerant Quantum Communication with Minimal Physical Requirements

    Full text link
    We describe a novel protocol for a quantum repeater which enables long distance quantum communication through realistic, lossy photonic channels. Contrary to previous proposals, our protocol incorporates active purification of arbitrary errors at each step of the protocol using only two qubits at each repeater station. Because of these minimal physical requirements, the present protocol can be realized in simple physical systems such as solid-state single photon emitters. As an example, we show how nitrogen vacancy color centers in diamond can be used to implement the protocol, using the nuclear and electronic spin to form the two qubits.Comment: 4 pages, 3 figures. V2: Minor modifications. V3: Major changes in the presentation and new titl

    Spin-Photon Entangling Diode

    Get PDF
    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control of the diode bias and local gating allow for the generation of single photons that are entangled with a robust quantum memory based on the electron spins. Practical performance of this approach to controlled spin-photon entanglement is analyzed.Comment: 4 pages, 2 figures; figures update

    Coupling Nitrogen Vacancy Centers in Diamond to Superconducting Flux Qubits

    Get PDF
    We propose a method to achieve coherent coupling between Nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light.Comment: Accepted in Phys. Rev. Lett. Updated text and Supplementary Material adde

    Moment Analysis of the Cluster-Size-Distribution Approach to Scaling During Coagulation

    Get PDF
    We study the temporal approach of a cluster size distribution to its asymptotic scaling form. By enforcing consistency between the distribution’s zeroth moment derived from both the Smoluchowski equation and the scaling distribution ansatz, we find values for the scaling exponents w and z in terms of the scaling exponent τ and the kernel homogeneity λ which are not equivalent to their asymptotic, scaling forms. The predicted values do agree well, however, with intermediate time values found in simulations by Kang, Redner, Meakin, and Leyvraz [Phys Rev. A 33, 1171 (1986)]. By enforcing consistency between all moment orders, the asymptotic exponent values are found. These results imply the lowest-order moments approach their scaling values quickest

    Scaling Dynamics of Aerosol Coagulation

    Get PDF
    A combination of static and quasielastic light scattering and the theory of scaling solutions to Smoluchowski\u27s equation was used to determine the absolute coagulation rate K\u270 and kernel homogeneity lambda of a coagulating liquid-drop aerosol. Droplet sizes ranged from 0.23 to 0.42-mu-m, implying Knudsen numbers in the range 0.26 and 0.14. The temporal evolution of the number concentration M0 and the modal radius r(M) of an assumed zeroth-order log-normal distribution showed near-power-law behavior similar to that predicted by the scaling theory. From the temporal scaling behavior of M0(t) and r(M)(t), the absolute coagulation rate was calculated. The coagulation rates from each method were in good agreement. The rate also agreed well with theory that corrected the Brownian rate, good for the continuum regime, by the average Cunningham correction factor. In addition, the time dependence of the moments M0 and r(M), hence the determination of K\u270, was in good agreement with a real-time numerical solution of Smoluchowski\u27s equation for initial conditions analogous to our experimental ones

    Patterns of Contagious Yawning and Itching Differ Amongst Adults With Autistic Traits vs. Psychopathic Traits

    Get PDF
    Both individuals with diagnosed with Autism Spectrum Disorder (ASD) and individuals high in psychopathic traits show reduced susceptibility to contagious yawning; that is, yawning after seeing or hearing another person yawn. Yet it is unclear whether the same underlying processes (e.g., reduced eye gaze) are responsible for the relationship between reduced contagion and these very different types of clinical traits. College Students (n = 97) watched videos of individuals yawning or scratching (a form of contagion not reliant on eye gaze for transmission) while their eye movements were tracked. They completed the Interpersonal Reactivity Index (IRI), the Autism-Spectrum Quotient (AQ), the Psychopathy Personality Inventory-Revised (PPI-R), and the Adolescent and Adult Sensory Processing Disorder Checklist. Both psychopathic traits and autistic traits showed an inverse relationship to contagious yawning, consistent with previous research. However, the relationship between autistic (but not psychopathic) traits and contagious yawning was moderated by eye gaze. Furthermore, participants high in autistic traits showed typical levels of contagious itching whereas adults high in psychopathic traits showed diminished itch contagion. Finally, only psychopathic traits were associated with lower overall levels of empathy. The findings imply that the underlying processes contributing to the disruptions in contagious yawning amongst individuals high in autistic vs. psychopathic traits are distinct. In contrast to adults high in psychopathic traits, diminished contagion may appear amongst people with high levels of autistic traits secondary to diminished attention to the faces of others, and in the absence of a background deficit in emotional empathy

    The influence of groundwater abstraction on interpreting climate controls and extreme recharge events from well hydrographs in semi-arid South Africa

    Get PDF
    There is a scarcity of long-term groundwater hydrographs from sub-Saharan Africa to investigate groundwater sustainability, processes and controls. This paper presents an analysis of 21 hydrographs from semi-arid South Africa. Hydrographs from 1980 to 2000 were converted to standardised groundwater level indices and rationalised into four types (C1–C4) using hierarchical cluster analysis. Mean hydrographs for each type were cross-correlated with standardised precipitation and streamflow indices. Relationships with the El Niño–Southern Oscillation (ENSO) were also investigated. The four hydrograph types show a transition of autocorrelation over increasing timescales and increasingly subdued responses to rainfall. Type C1 strongly relates to rainfall, responding in most years, whereas C4 notably responds to only a single extreme event in 2000 and has limited relationship with rainfall. Types C2, C3 and C4 have stronger statistical relationships with standardised streamflow than standardised rainfall. C3 and C4 changes are significantly (p < 0.05) correlated to the mean wet season ENSO anomaly, indicating a tendency for substantial or minimal recharge to occur during extreme negative and positive ENSO years, respectively. The range of different hydrograph types, sometimes within only a few kilometres of each other, appears to be a result of abstraction interference and cannot be confidently attributed to variations in climate or hydrogeological setting. It is possible that high groundwater abstraction near C3/C4 sites masks frequent small-scale recharge events observed at C1/C2 sites, resulting in extreme events associated with negative ENSO years being more visible in the time series

    In-situ fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in drinking water than faecal indicator organisms

    Get PDF
    Faecal indicator organisms (FIOs) are limited in their ability to protect public health from the microbial contamination of drinking water because of their transience and time required to deliver a result. We evaluated alternative rapid, and potentially more resilient, approaches against a benchmark FIO of thermotolerant coliforms (TTCs) to characterise faecal contamination over 14 months at 40 groundwater sources in a Ugandan town. Rapid approaches included: in-situ tryptophan-like fluorescence (TLF), humic-like fluorescence (HLF), turbidity; sanitary inspections; and total bacterial cells by flow cytometry. TTCs varied widely in six sampling visits: a third of sources tested both positive and negative, 50% of sources had a range of at least 720 cfu/100 mL, and a two-day heavy rainfall event increased median TTCs five-fold. Using source medians, TLF was the best predictor in logistic regression models of TTCs ≥10 cfu/100 mL (AUC 0.88) and best correlated to TTC enumeration (ρs 0.81), with HLF performing similarly. Relationships between TLF or HLF and TTCs were stronger in the wet season than the dry season, when TLF and HLF were instead more associated with total bacterial cells. Source rank-order between sampling rounds was considerably more consistent, according to cross-correlations, using TLF or HLF (min ρs 0.81) than TTCs (min ρs 0.34). Furthermore, dry season TLF and HLF cross-correlated more strongly (ρs 0.68) than dry season TTCs (ρs 0.50) with wet season TTCs, when TTCs were elevated. In-situ TLF or HLF are more rapid and resilient indicators of faecal contamination risk than TTCs

    The El Niño event of 2015-16: climate anomalies and their impact on groundwater resources in East and Southern Africa

    Get PDF
    The impact of climate variability on groundwater storage has received limited attention despite widespread dependence on groundwater as a resource for drinking water, agriculture and industry. Here, we assess the climate anomalies that occurred over Southern Africa (SA) and East Africa, south of the equator (EASE), during the major El Niño event of 2015-16, and their associated impacts on groundwater storage, across scales, through analysis of in situ groundwater piezometry and GRACE satellite data. At the continental scale, the El Niño of 2015-16 was associated with a pronounced dipole of opposing rainfall anomalies over EASE and Southern Africa, north/south of ~120S, a characteristic pattern of ENSO. Over Southern Africa the most intense drought event in the historical record occurred, based on an analysis of the cross-scale areal intensity of surface water balance anomalies (as represented by the Standardised Precipitation-Evapotranspiration Index, SPEI), with an estimated return period of at least 200 years and a best estimate of 260 years. Climate risks are changing and we estimate that anthropogenic warming only (ignoring changes to other climate variables e.g. 43 precipitation) has approximately doubled the risk of such an extreme SPEI drought event. These surface water balance deficits suppressed groundwater recharge, leading to a substantial groundwater storage decline indicated by both GRACE satellite and piezometric data in the 46 Limpopo basin. Conversely, over EASE during the 2015-16 El Niño event, anomalously wet conditions were observed with an estimated return period of ~10 years, likely moderated by the absence of a strongly positive Indian Ocean Zonal Mode phase. The strong but not extreme rainy season increased groundwater storage as shown by satellite GRACE data and rising groundwater levels observed at a site in central Tanzania. We note substantial uncertainties in separating groundwater from total water storage in GRACE data and show that consistency between GRACE and piezometric estimates of groundwater storage is apparent when spatial averaging scales are comparable. These results have implications for sustainable and climate-resilient groundwater resource management, including the potential for adaptive strategies, such as managed aquifer recharge during episodic recharge events

    Evaluating the application of research-based guidance to the design of an emergency preparedness leaflet.

    Get PDF
    Guidelines for the design of emergency communications were derived from primary research and interrogation of the literature. The guidelines were used to re-design a nuclear emergency preparedness leaflet routinely distributed to households in the local area. Pre-test measures of memory for, and self-reported understanding of, nuclear safety information were collected. The findings revealed high levels of non-receipt of the leaflet, and among those who did receive it, memory for safety advice was poor. Subjective evaluations of the trial leaflet suggested that it was preferred and judged easier to understand than the original. Objective measures of memory for the two leaflets were also recorded, once after the study period, and again one week or four weeks later. Memory for the advice was better, at all time periods, when participants studied the trial leaflet. The findings showcase evaluation of emergency preparedness literature and suggest that extant research findings can be applied to the design of communications to improve memory and understandability. STATEMENT OF RELEVANCE: Studies are described that showcase the use of research-based guidelines to design emergency communications and provide both subjective and objective data to support designing emergency communications in this way. In addition, the research evaluates the effectiveness of emergency preparedness leaflets that are routinely distributed to households. This work is of relevance to academics interested in risk communication and to practitioners involved in civil protection and emergency preparedness
    corecore